

Methods and Tools for Quantifying Farm-Scale Greenhouse Gas Fluxes

Marlen Eve, USDA Climate Change Program Office

ACES 2014 Washington, DC December 11, 2014

Quantifying Greenhouse Fluxes in Agriculture and Forestry: Methods for Entity-Scale Inventory

Acknowledgements

- Project partner: ICF International, Diana Pape and team.
- Lead Authors: Stephen Ogle (CSU); Wendy Powers (MSU); Coeli Hoover (FS)
- Numerous authors, experts, contributors and reviewers.
- Tool Building: Colorado State University; U.S. Forest Service; NRCS

Quantifying Greenhouse Fluxes in Agriculture and Forestry: Methods for Entity-Scale Inventory

Goal: To create a standard set of GHG quantification methods and tools for landowners, USDA, and other stakeholders.

- Phase 1: Report outlining comprehensive science-based methods for entity-scale GHG estimation.
- Phase 2: Develop a user-friendly tool that follows the methods report to provide land owners and managers with reliable and understandable estimates of GHG emissions and C sequestration.
- 1.Transparency
 2.Consistency
 3.Comparability
 4.Completeness
 5.Accuracy
 6.Cost
 effectiveness
 7.Ease of use

CHALLENGE: Vetting the methods. Establishing the rigor and transparency of the report. 38 expert Science-Based Methods scientific authors reviewers ССРО USDA Tech. Rev. Oct 2011 Inter-Agency Tech. Rev. May 2012 Scientific Experts Feb - March 2013 Public Comment, Final Inter-Agency and USDA Review Sept - Oct 2013 21 subject **Federal** Final Report Release matter July 2014 agency experts experts

REPORT LAYS TO CONTENT

RELEASED

RELEASED

OVER 570K

OVER 570K

OVER 570K

OVER 570K

OVER 570K

Clim
Prog

Tech

Rulls

*** od States Department of Agriculture

of the onomist

Climate Change Program Office

Technical Bulletin 1939

July 2014

Quantifying Greenhouse Gas Fluxes in Agriculture and Forestry:
Methods for Entity-Scale Inventory

Executive Sump

Introduction

- Considerations
- Crop and Grazing Lands
- Wetlands
- Animal Systems
- Forest lands
- Land Use Change
- Uncertainty Assessment

http://www.usda.gov/oce/climate_change/estimation.htm

THE USDA GHG METHODS

The Methods Report is designed to be:

- A scientifically vetted means for USDA to provide local-scale, standardized and transparent estimation of GHG fluxes
- Consistent with the USDA and EPA national GHG inventories
- Aligned with NRCS's COMET Farm and other USDA GHG tools.
- Coordinated with water quality or other tools to assess environmental services benefits

The entity - combining a landowner's crop, livestock and forestry activities into one seamless GHG estimate. **Animal Feeding Operation Trees Trees** Crop **Pasture Forest**

Cropland

- Fertilizer management
- Tillage management
- Crop rotations
- Cover cropping
- Water or residue mgmt in cultivated rice
- Drainage
- Irrigation
- Biomass burning

Forestry

- Thinning and harvest
- Fertilizer management
- Species management
- Irrigation
- Biomass burning
- Planting/re-establishing
- Clearing and/or land conversion

Grazing Land

- Fertilizer management
- Grazing management
- Species enhancement
- Drainage
- Irrigation
- Prescribed burning

Livestock

- Animal housing
- Feeds and additives
- Feeding management
- Manure collection and storage
- Composting
- Land application of manure

Agroforestry

- Windbreaks
- Alley cropping
- Silvopasture
- Riparian forest buffers
- Forest farming
- Species selection/mgmt
- Cropping system/mgmt

Managed Wetlands

- Species mix
- Biomass management
- Water management

Integrating the methods into COMET-Farm . . .

Integrating the methods into COMET-Farm . . .

Simplified Cropland Example

- Northern Plains
- Wheat/Fallow
- Intensive tillage
- 80 lbs anhydrous before planting
- Removing straw after harvest

What if I Continuous Crop Using No Till?

- Left fertilizer, yield, residue removal same
- Eliminated tillage
- Cropped every year

<u>Choose Scenarios</u>	Baseline Hide	Cont Crop N	lo Till	
■ Total all parcels (tonnes CO ₂ equivalent/year)	94.2	-32.9	9 -127.1	Total all parcels (tonnes CO ₂ equivalent/year)
■ Crop Field 1 GRAPH (726 acres)	94.2	-32.9 (+/-0)	9 -127.1	Parcel CO ₂ Equivalent (tonnes/year)
CO ₂ Emissions (tonnes/year)	-20.4 (+-0)	-193.4 (+/-0)	-173.0	CO, Emissions (tonnes/year)
N ₂ O Emissions (tonnes CO ₂ equivalent/year)	114.6 (+-0)	160.5 (+/-0)	45.9	N ₂ O Emissions (topnes CO ₂ equivalent/year)
Methane (CH ₄) Emissions (tonnes CO ₂ equivalent/year)	0.0 (+-0)	0.0 (+/-0)	0.0	Methane (CH ₄) Emissions (tonnes CO ₂ equivalent/year)

What if I Change My Nutrient Management?

- Left fertilizer, yield, residue removal same
- Eliminated tillage
- Cropped every year
- Applied side-dress UAN
- Because of increased NUE, reduced rate

REPORTING COMET-FARM RESULTS

Currently:

- * Scenario comparison what if's, decision support
- * Graphs comparison of baseline vs scenario

Coming soon:

- * Three levels of reporting detail
 - ~ Overview summary with graphs
 - ~ Scenario comparison with graphics
 - ~ Detailed annual inventory with graphics

COMING SOON...

Addition of a more detailed "inventory" style report format that will be useful for landowners engaging GHG registries, markets or supply chain initiatives.

 NAME:
 Kevin Brown
 RUNID:
 190_102_7085

 PROJECT:
 Example for New Report
 TIME:
 10/29/2014
 9:54:08 AM

Source 20						Years	Prior to	Mgmt.	Change								Projected Emissions							
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2.	20	2016	2017	2018	2019	2020	2021	20	
Field 1 (100 acres - Co	rn)																							
	0	0	0	0	0	0	0	0	0	0	0		U	0	0	0		0	0	0	0	0	0	
Soil	0	0	0	0	0	0	0	0	0	0	0		0	O O	0	0		0	0	0	0	0		
Biomass	0	0	0	0	0	0	0	0	0	0	0			0	0	0	0	0	0	0	0	0		
Litter	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0		
002	0	0	0	0	0	0	0	0		9	0	0		0	0	0	0	0	0	0	0	0	(
Liming	0	0	0	0	0	0	0	0			0	0		0	0	0	0	0	0	0	0	0		
Urea Fertilization	0	0	0	0	0	0	0	0		U.	9	0	0	0	0	0	0	0	0	0	0	0		
Drained Organic Soils	0	0	0	0	0		0	0				0	0	0	0	0	0	0	0	0	0	0		
N ₂ O	0	0	0	0		0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0		
Soil	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0		
Wetland Rice Cult.	0	0	0	0			0	0		0	0	0	0	0	0	0	0	0	0	0	0	0		
Biomass Burning	0	0	0	0	\	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Drained Organic Soils		,	0	0		0	U	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
CH4		0		0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Wetland Rice Cult.		0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Biomass Burning		0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
IOx	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Biomass Burning	0		4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
00	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		

BRAND NEW...

and the Marin Carbon Project

Print page

Brand new from NRCS.

- A planning tool for evaluating **NRCS** Conservation **Practices**
- For more rigorous quantification, a user would go to COMET-Farm

Evaluate potential carbon sequestration and greenhouse gas reductions from adopting NRCS conservation practices PROJECT NAME:

Nebraska notill example

State:

NE

County:

Cuming

Approximate Carbon Sequestration and Greenhouse Gas Emission Reductions¹ tonnes CO2 equivalent per year

Total CO2-Enter Acreage CO₂ N2O CH4 Equivalent NRCS Conservation Practices Conventional Tillage to Reduced Tillage (CPS345) 100 13 20 www.comet-planner.com Conventional Tillage to No Till (CPS329) 100 42 N.E.² 0 42

NEXT STEPS

- Complete the cropland, grazing land and livestock updates to COMET-Farm
- Expand reporting capabilities
- Build out the tool for forest management
- Incorporate uncertainty assessment
- Regular revisions and updates

CONTACT INFORMATION

Thank you!

Marlen Eve
U.S. Department of Agriculture
Climate Change Program Office
meve@oce.usda.gov
(202) 401-0979

Climate Change Program Office: www.usda.gov/oce/climate_change

COMET-Farm: www.comet-farm.com

USDA GHG Methods Report:

http://www.usda.gov/oce/climate_change/estimation.htm